Characterization of LDL particle size among carriers of a defective or a null mutation in the lipoprotein lipase gene: the Québec LIPD Study.

نویسندگان

  • Isabelle L Ruel
  • Daniel Gaudet
  • Patrice Perron
  • Jean Bergeron
  • Pierre Julien
  • Benoît Lamarche
چکیده

OBJECTIVE The objective of the present study was to compare the impact of the null P207L and defective D9N mutations in the LPL gene on LDL particle size among heterozygous carriers. METHODS AND RESULTS LDL particle size was measured on whole plasma by 2% to 16% non-denaturing polyacrylamide gradient gel electrophoresis in a cohort of 206 heterozygous carriers of either the P207L or the D9N mutation. The P207L carriers (N=88) presented with a more atherogenic lipoprotein-lipid profile compared with the D9N carriers (N=118). Accordingly, LDL particle size was smaller in the P207L carriers than in the D9N subjects (248.8+/- 1.0 vs 254.5+/-1.0 A, P< 0.001), and the difference remained significant after adjustment for plasma triglyceride (TG) levels. The difference in LDL diameter between the P207L and the D9N carriers was 3-fold greater in individuals with plasma TG levels >3.5 mmol/L than in subjects with TG < or =3.5 mmol/L. The factors that statistically contributed to LDL particle size variation in multivariate analyses were plasma TG levels (11.6%) and age (6.4%) in subjects with TG levels < or =3.5 mmol/L and HDL cholesterol levels (15.5%) and the LPL gene mutation (null versus defective, 7.0%) in patients with TG levels >3.5 mmol/L. CONCLUSIONS These results suggest that the null P207L mutation in the LPL gene has a greater impact on LDL particle size than the defective D9N mutation and that this mutation-specific effect is amplified at greater plasma TG concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Mutation in Exon 4 of the Low Density Lipoprotein (LDL) Receptor Gene in an Iranian Familial Hypercholesterolemia Patient

Familial hypercholesterolemia (FH) is an autosomal co-dominant disorder of lipid metabolism, caused by mutations in LDL receptor gene. The penetrance of FH is almost 100%, meaning that half of the offspring of affected parents born with disease. The patients are at risk of premature coronary heart disease (CHD). There is no report about the molecular basis of FH in Iran. Identification of mutat...

متن کامل

Familial Hypercholesterolemia in Iran: A Novel Frameshift Mutation in Low Density Lipoprotein Receptor (LDLR) Gene

  Background and Objective: Familial hypercholesterolemia (FH) is an autosomal trait, which is caused by mutations in Low Density Lipoprotein Receptor (LDLR) gene. FH penetrance is about 100% and worldwide prevalence for heterozygous subjects is almost 1 in 500 and for homozygous 1 in 1,000,000. The patients are at risk of premature coronary heart disease (CHD) due to defective LDLR a...

متن کامل

Lipoprotein Lipase (LPL) Gene Mutation: A First Report in Children

Genetic hyperchylomicronemia is a rare autosomal recessive disorder of lipoprotein metabolism estimated to affect approximately one per million individuals. We report a case with a rare mutation identified. It’s a genetic chylomicronemia in a Moroccan newborn baby, with massive hypertriglyceridemia and clinical signs of acute pancreatitis. She was a newborn female, first-degree of consanguineou...

متن کامل

Association between Lipoprotein Lipase Hind III Polymorphism and Serum Levels of Lipids in Semnan City

Background & Aims: Lipoprotein lipase (LPL) is one of the key enzymes regulating the metabolism of triglycerides (TG) and HDL cholesterol. The lipoprotein lipase (LPL) gene polymorphisms are possibly involved in the pathophysiology of dyslipidemia. Hind III polymorphism is one of the most common polymorphisms in LPL gene. In some studies, association of Hind III polymorphism with dyslipidemia h...

متن کامل

Analysis of the association Hind III Polymorphism of Lipoprotein Lipase gene on the risk of coronary artery disease

Background: Coronary artery disease (CAD) is one of the leading causes of death and disability around the world. Interaction between genetic and environmental factors determines susceptibility of an individual to develop coronary artery disease . Lipoprotein lipase (LPL) play an important role in the metabolism of HDL-C ( High Density Lipoprotein Cholesterol ), LDL-C (Low Density Lipoprotein Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2002